抗压强度/MPa≥20
干缩率/%≤0.10
抗折强度/MPa≥10.0
界面弯拉强度≥2.0
粘结强度/MPa≥2.0
粒度200
型号200
货号2466
一种湿法制备技术利用珍珠岩尾矿制备珍珠岩抛光磨料。与传统干法工艺相比 ,珍珠岩抛光磨料产品产率从 3 0 %提高到 70 %以上 ,颗粒粒度小于 15 0 μm ,而 0 -4 4μm粒级含量不到 10 %。粒度分布更加合理 ,完全满足玻壳行业及相关行业的要求。湿法制备珍珠岩抛光磨料是珍珠岩加工业充分合理利用珍珠岩尾矿的十分有效的利用途径。 提高硬质合金刀片前刀面化学机械抛光(CMP)的材料去除率和表面质量,采用6种不同硬度磨料(金刚石、碳化硼、碳化硅、氧化铝、氧化锆、氧化硅)对硬质合金刀片CMP加工,采用表面粗糙度测量仪和**景深三维显微系统观察抛光前后刀片的表面形貌,探讨硬质合金CMP材料去除机制。实验结果表明:碳化硼磨料因粒径分散性大,造成硬质合金刀片表面划痕较多;低硬度的氧化硅、氧化锆、碳化硅磨料只能去除硬质合金刀片表面局部划痕区域;接近硬质合金刀片硬度的氧化铝磨料,可获得较好的表面质量;硬度的金刚石磨料在CMP加工时,在硬质合金刀片表面上产生机械应力,促进化学反应,获得比其他磨料更高的材料去除率和更好的表面质量。因此,在硬质合金刀片粗加工时可以选用氧化铝磨料,精加工时选用金刚石磨料。
为了提高微晶玻璃化学机械抛光(CMP)的材料去除速率(MRR),降低其表面粗糙度,利用自制的抛光液对微晶玻璃进行化学机械抛光,研究了4种含不同磨料(Si O2、Al2O3、Fe2O3、Ce O2)的抛光液对微晶玻璃化学机械抛光MRR和表面粗糙度的影响.利用纳米粒度仪检测抛光液中磨料的粒径分布和Zeta电位,利用原子力显微镜观察微晶玻璃抛光前后的表面形貌.实验结果表明,在相同条件下,采用Ce O2作为磨料进行化学机械抛光时可以获得的表面质量,抛光后材料的表面粗糙度Ra=0.4 nm,MRR=100.4 nm/min.进一步研究了抛光液中不同质量分数的Ce O2磨料对微晶玻璃化学机械抛光的影响,结果表明,当抛光液中Ce O2质量分数为7%时,MRR达到185 nm/min,表面粗糙度Ra=1.9 nm;而当抛光液中Ce O2质量分数为5%时,MRR=100.4 nm/min,表面粗糙度Ra=0.4 nm.Ce O2磨料抛光后的微晶玻璃能获得较低表面粗糙度和较高MRR.
蓝宝石具有高硬度(莫氏硬度9)、优异的耐腐蚀性以及良好的光学和机械性能,因此广泛应用于固态激光器,精密抗摩擦轴承,红外窗口,半导体芯片基板等高科技领域。随着科技迅猛的发展,对蓝宝石表面平整度要求越来越高,而化学机械抛光(CMP)是目前普遍的表面加工技术,是公认的可以实现全局平坦化抛光方法,所以用化学机械抛光对蓝宝石表面的**精密抛光成为研究的热点。在CMP中,抛光浆料和抛光磨料扮演着重要角色,对蓝宝石的抛光质量有直接的影响。本文研究了将氧化铝磨料分散于硅溶胶中获得了稳定性及抛光性能均较好的抛光浆料。采用均相沉淀法制备出粒径分别为320nm、500nm、1.0μm左右的球形氧化铝磨料,采用直接沉淀法制备出粒径320nm的不规则形貌的氧化铝磨料,并将不同粒径、形貌的氧化铝对蓝宝石进行抛光,得出粒径为1.0μm的球形氧化铝具有较佳的抛光效果。通过扫描电子显微镜(SEM)、X射线衍射(XRD)等手段对样品的形貌、物象等进行表征。通过Zeta电位对抛光浆料的分散稳定性进行检测,通过原子力显微镜(AFM)对蓝宝石抛光前后的表面粗糙度进行检测。主要结果如下:将氧化铝磨料分散在硅溶胶中,体系的稳定
产品用途分析:珍珠岩磨料主要用于电视机玻壳、电脑显示屏、光学玻璃仪器及玻璃工艺饰品的抛光。在某些计算机显示屏生产中,为了降低显示屏表面的反光度,保护操作人员的视力,需要对显示屏玻壳表面进行打磨。电脑显示屏玻壳的摩氏硬度一般在6.8一7.0之间,珍珠岩的摩氏硬度为5一6,硬度中等,非常适于玻壳的研磨。将珍珠岩磨料加到玻屏表面在打磨机上施加一定的压力,与砂纸一起对玻屏表面进行机械打磨,使玻壳表面的光泽度达到适当的程度。【中信抛光磨料】钇铝石榴石(YAG)是一种应用广泛的硬脆难加工材料,其抛光过程工艺复杂、效率低。固结磨料抛光技术具有平坦化能力优、对工件形貌选择性高、磨料利用率高等优点。试验采用固结磨料抛光YAG晶体,研究固结磨料垫的基体硬度和金刚石磨粒尺寸对YAG晶体的材料去除率和表面质量的影响。结果表明:当基体硬度适中为Ⅱ、金刚石磨粒尺寸3~5μm时,固结磨料抛光YAG晶体效果优,其材料去除率为255 nm/min,表面粗糙度S_a值为1.79 nm。
http://chengxibaowen.cn.b2b168.com